HIKVISION

Controles de acceso Hikvision

Formato Wiegand

Formato Wiegand de control de acceso de Hikvision

1. Wiegand 26

1.1 Data format:

E/O: Even/Odd parity
C: Card ID Number
The above data is sent in order from left to right

The meaning of each data bit:
The 1st bit: the even parity bit of the output data 2-13 bits
Bits 2-9: the lower 8 bits of the HID code of the card
Bit 10-25: PID number of the card
The 26th bit: the odd parity bit of output data 14-25 bits

1.2 Card number generation rules

Wiegand26 in total 8 digits card number (Decimal)
Bits 2-9 correspond to the lower 8 digits of the card's HID code (converted to decimal, as the upper three digits of the 8-digit card number, and the length is insufficient to fill in zeros) + the 10-25 digits correspond to the PID number of the card (converted to decimal, as the lower 5 digits of the 8 -digit card number, the length is not enough to fill in zeros

For example:
011101000001000000111101

Binary: 01110100
Decimal: 116

Binary: 0001000000111101
Decimal: 04157

Then we get the final 8 digit card number: 11604157

The supported maximum card number is 11111111111111111111 1111, Decimal 25565535

2. Wiegand 34

2.1 Data format:

E/O: Even/Odd parity
C: Card ID Number
The above data is sent in order from left to right

The meaning of each data bit:
The 1st bit: the even parity bit of the output data 2-17 bits
Bits 2-17: the lower 8 bits of the HID code of the card
Bit 18-33: PID number of the card
The 34th bit: the odd parity bit of output data 18-33 bits

2.2 Card number generation rules

Take the 2-byte HID code(2-17 bit) as the high byte, and the 2-byte PID code as the low 2 bytes; after synthesizing 4 bytes, they will be uniformly converted into a decimal number (if less than 10 digits, the high digits will be filled with 0)

For example:
11000010011101000001000000111101

Binary: 11000010011101000001000000111101
Decimal: 3262386237

Then we get the final 10 digit card number: 3262386237

The supported maximum card number is 1111111111111111111111111111 1111, Decimal 4,294,967,295

3. Keypad format for Wiegand connection

When the digit key is pressed, four bits of data are transmitted every time the key is pressed, and finally ends with '\#' to inform the host that the key input is completed.

Note: Please confirm your card reader (model with $-K$) and access control terminal or access controller support opening door with password through Wiegand reader connection.

KKKK	
K: key value bit	
Bits 1-4: the value of the key	
Hexadecimal	button
0×01	1
0×02	2
0×03	3
0×04	4
0×05	5
0×06	6
0×07	7
0×08	8
0×09	9
$0 \times 0 \mathrm{~A}$	$*$
$0 \times 0 B$	$\#$

See Far, Go Further

